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Robust estimation of spectral reflectance by a

projector-camera system
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A Projector-camera (Procam) system is an inexpensive, household, controllable system that can be used
to eliminate inter-reflection existing in the measurement. We propose an estimation method for spectral
reflectance that uses the Procam system. The method recovers reflectance from the training set constructed
by a known reflectance and the corresponding 9D color-mixing matrix. Experiment results show that our
method performs well with 9D response, and the local weighted training set based on Mahalanobis metric
can enhance the accuracy of result efficiently.
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Estimating the spectral reflectance of objects or scenes
in visible wavelengths is useful in numerous vision
tasks such as material recognition, relighting, multispec-
tral projection display, etc. Although using a spec-
trophotometer and the illumination sequences of spe-
cific wavelengths is a precise way to recover spectral
reflectance, it is not practical since the laboratory in-
struments are expensive and require professional train-
ing. Hence, methods that use multi-spectral imaging
systems have been proposed as a substitute to using
spectrophotometers[1−4]. These methods can estimate
the spectral reflectance from the training samples with-
out known a illumination spectrum and spectral sensi-
tivity. The training samples are constructed with abun-
dant spectral reflectance and the corresponding camera
response. However, these multi-spectral imaging tech-
niques cannot deal with concave objects in the presence
of inter-reflection because inter-reflection that exists in
the measurement may cause inaccurate results.

Benefit from encoded patterns techniques[5] of the
Projector-camera (Procam) system, we can separate di-
rect and indirect light rapidly which cannot be realized
with other controllable light sources. The system that
combines controllable projectors with cameras is popular
in a wide range of applications, such as three-dimensional
(3D) scanning, flexible display walls[6], light field acqui-
sition, and interaction. Han et al.[7] used a digital light
processing (DLP) projector and a camera to recover re-
flectance, but the method requires the spectral sensitivity
of camera to be known. As mentioned above, the method
is inaccurate and the process may cause accumulated
errors without laboratory measurements. Furthermore,
previous prior-free methods[1−4] are also impractical for
estimation reflectance using the Procam system since the
adjacent channels of the Procam system are highly cor-
related. These methods are not applicable to high corre-
lation datasets. In this letter, a robust prior-free method
is proposed. We will show the local weighted samples
based on Mahalanobis metric are more appropriate for
estimating spectral reflectance by using the Procam sys-
tem.

The method is largely inspired by the Procam color-

mixing (PCCM) matrix which was introduced to radio-
metric compensation previously[8]. The 3 × 3 matrix is
defined to describe the behavior of projection surface in
the feedback of a Procam system. Spectral reflectance
is an intrinsic characteristic independent of the spectral
distribution of illumination and sensitivity of camera sen-
sors, thus we estimate it from the PCCM matrix. By us-
ing a known spectral reflectance and the corresponding
PCCM matrix of the training samples, the goal spectral
reflectance can be recovered. To recover the absolute re-
flectance ratio each time, a certain distance between the
projector and the reflection surface is necessary. Obvi-
ously, we can solve the extrinsic parameters (pose and
position) of a Procam system by using geometric calibra-
tion techniques[9]. In practice, we use a 24 color-Macbeth
chart to create the training set. The PCCM matrix of
several color chips on the Macbeth chart is shown in Fig.
1.

In general, the response model based on the Procam
system can be expressed as

Cmn =

∫
(Pmlm(λ) + e(λ))sn(λ)r(λ)dλ, (1)

where Cmn is the response of nth channel under the mth
illumination, e(λ) is the spectral distribution of noise
light, lm(λ) is the spectral distribution of the mth pro-
jector channel, r(λ) is the spectral reflectance of a surface

Fig. 1. PCCM matrix of the color chips on the Macbeth chart.
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point, Pm is the radiant intensity of each channel and
sn(λ) is the spectral sensitivity of the nth camera chan-
nel. The noise consists of ambient light and the black
offset of projector, it can be cancelled by subtracting an-
other captured image with changing the illumination in
one channel as follows:

△Cn =

M∑

m=1

Pm

∫
lm(λ)sn(λ)r(λ)dλ. (2)

In Fig. 2, we show the required four images to create
the PCCM matrix for each pixels. Rewriting Eq.(2) into
matrix form, we obtain

[△CR

△CG

△CB

]
=

[
VRR VRG VRB

VGR VGG VGB

VBR VBG VBB

]
×

[
PR

PG

PB

]
, (3)

where V is the PCCM matrix. lm(λ) and sn(λ) are
fixed in a Procam system, thus the element Vmn in the
PCCM matrix is a constant that represents the average
reflectance in the domain of lm(λ)sn(λ). Referring to
the database of spectral sensitivity functions measured
by Jiang et al.[10], wide domain intersections are found to
exist between the spectral sensitivity sn(λ) of each chan-
nel. In addition, the sum of the three channels Σlm(λ)
generally covers entire visible wavelengths. The two fac-
tors of Procam system ensure that the elements in the
PCCM matrix are larger than 0.

As mentioned above, it is convenient to eliminate am-
bient light error by subtracting a base image. In practise,
however, inter-reflection among patches on measured ob-
jects may introduce significant errors, such errors can not
be eliminated by using an uncontrollable light source. To
separate direct and indirect light, we create four high-
frequency color-coded multiplexing patterns as shown in
Fig. 3.

The ith pattern P i
c of channel c is modulated as





P i
c =

1

2
+

1

2
sin

(2π

5
Nci + φc(x, y)

)

Ci
c

=
∑

P i

c′
Vc′c +

1

2
Lc (c, c′ ∈ {R, G, B})

, (4)

where Nc is the parameter of each channel to control
modulation frequency, i is the sequence number of the

Fig. 2. Macbeth-color-chart images captured by a camera un-
der different illumination of projector: (a) base illumination,
(b) change red channel, (c) change green channel, and (d)
change blue channel.

Fig. 3. Four high-frequency color-coded multiplexing pat-
terns.

pattern and φc(x, y) is the phase of point (x, y) on
the pattern image in the c channel, both Nc and i
∈ {1, · · · , 4}. Ci

c
is the corresponding camera response of

pattern P i
c and Lc is the indirect light (inter-reflection)

of the c channel. It worth notice that Lc is a constant
since an assumption can be made that indirect compo-
nent light remains constant as high-frequency patterns
shift[11]. Thus, after capturing the image with the maxi-
mum illumination (all channel are 1), we can obtain the
maximum response C̄c, where C̄c =

∑
Vc′c + Lc(c

′ ∈
{R, G, B}). Indirect light Lc can be removed as

Ci

c
=

1

2

(
C̄c +

∑
sin

(2π

5
Nci + φc(x, y)

)
Vc′c

)

(c, c′ ∈ {R, G, B}). (5)

Three unknown variables φc(x, y) and nine Vc′c exist in
the equations, thus, we have twelve unknown variables.
3 (channels)× 4 (patterns) = 12 equations is sufficient to
derive the direct-reflection solution.

The spectral distribution of an liquid crystal display
(LCD) projector and the spectral sensitivity of a digital
camera measured by a spectrophotometer are shown in
Fig. 4(a) and (b), respectively. In this letter, we ap-
ply the training set (X, R) to determine the spectral
reflectance, where X is the set of 9D PCCM vectors
x = [VRR, VRG, VRB, VGR, VGG, VGB, VBR, VBG, VBB] and
R is the set of the corresponding spectral reflectance.
In general, subspace dimension of real-world materials
reflectance is 5-8[12]; therefore, the vector is applicable
and sufficient to recover natural reflectance. Further-
more, we can use inexpensive wide-band filters to increase
the number of channels and reduce the possible effects of
metamerism.

The linear pseudo-inverse method is a simple and ro-
bust tool for estimating spectral reflectance without any
prior knowledge. Given a input vector x and a training
set (X, R) , we can estimate the reflectance r using the
normal equations as follows:

r = RX(XT
X)−1

x. (6)

It is worth notice that training samples neighbors are
usually more reliable and contribute more to the estima-
tion. Therefore, instead of global inversion and regression
method, we use a local definition to provide more accu-
rate results[13]. That is, an spectral reflectance r can be
reconstructed by k nearest neighbors. It is reasonable
since a sample in high dimension can be represented as a
linear combination of its neighborhood according to the
theory of local manifold embedding. Thus the key issue
becomes how to select k appropriate neighborhoods from
the training set.

Unlike reflectance estimation from the response of
trichromatic camera or multi-spectral narrow-band cam-
era, higher correlations exist among variables in the vec-
tor as shown in Fig. 4 (c), particulary between adjacent
channels. Moreover, due to the significant difference (al-
most two orders of magnitude) among measure vectors
lm(λ)sn(λ), neighborhoods selection should also account
for scaling each coordinate axis. In our method, neigh-
borhoods will be selected according to the Mahalanobis
distance rather than the Euclidean distance. We define
the distance between vectors x and xi as
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Fig. 4. (a) Spectral distribution of a projector and spectral
sensitivity of a camera, (b) spectral distribution of Procam
nine channels, and (c) distribution of adjacent channels of
the PCCM vector on Macbeth chart (from first to last: VRR−
VRG, VRG−VBR, VBR−VBB, VBB−VBG, VBG−VGG, VGG−VGB).

Fig. 5. (Color online) Spectral reflectance recovery (a) with-
out inter-reflection removal and (b) with inter-reflection re-
moval. The estimated reflectance spectra of regions a, b, c,
d are shown as solid lines (red: estimated reflectance in the
concave scene as shown in the images, green: estimated re-
flectance in an uniform illumination scene (not appearing in
the images) without any inter-reflection; the materials of re-
gions a and b, c and d are the same (zoom in to see details)).

D(x, xi) = (
√

x − xi)
TS−1(x − xi), (7)

where S is the covariance matrix of samples. It is worth
notice that the performance of the Mahalanobis distance
is not stable because of its dependence on training sam-
ples. We should ensure that the size of training set is
larger than the number of channels (k > 9) and remove
the linearly independent samples, or using the standard
Euclidean distance once the Mahalanobis distance be-
comes invalid.

Although the neighbor samples {
⋃

xi|i = 1, · · · k} are
reliable to estimate reflectance from the candidate x,
the contribution of each sample xi should not be equal
since the distance D(x, xi) are different. Motivated by
the optimized adaptive estimation method proposed by

Shen et al.[14], we construct the training set (X̃, R̃) with
weighted neighbor samples {(αixi, αiri) |i = 1, · · ·k} in

this letter. The weighted αi is

αi = exp
[
− 1

2
(x − xi)

T S−1
k (x − xi)

]
, (8)

where S
−1
k

is the covariance matrix of k neighbor sam-
ples. Then, the reflectance r can be solved as

r = R̃X̃(X̃T
X̃)−1

x, (9)

where (X̃, R̃) is the local weighted training set.
In the first experiment, we test our inter-reflection

removal (separation) and the reflectance estimation
method in a concave scene that consists of three color
chip boxes. As shown in Fig. 5 (a), there is a signif-
icant inter-reflection exists between two surfaces of the
bottom boxes. The inter-reflection causes redundant illu-
mination and color deviation, which result in inaccurate
camera response.

We use an LCD projector (EPSON EB300MS), a cam-
era (Canon 5D MarkII) and training samples of Macbeth
CDC 24 chips color-check to recover the reflectance of
regions a, b, c, d with and without inter-reflection re-
moval. We also recover the reflectance in an uniform
illumination scene without any inter-reflection for com-
parison purposes. As shown in Fig. 5, the estimated
value with inter-reflection removal (bottom) matches the
ground truth better than value with inter-reflection re-
moval (up), particularly in region a and b. The results
show that our inter-reflection removal method with a
Procam system is efficient and robust.

In the second experiment, we compare our local
weighted pseudo-inverse method with the optimized
adaptive estimation method and the global pseudo-
inverse method by simulating with large amounts of
samples as shown in Table 1. Projector illumination
and camera responses are simulated based on the actual
spectral distribution of a projector and actual spectral
sensitivity of a camera. In this case, to meet to ordi-
nary situation, we add random Gaussian white noise e

to camera response x ( ||e||
||x|| = 0.004).

Table 2 shows the reflectance errors of the three
methods on the validation sets with samples sizes
N = 100, 200, 300, 600 randomly selected from the train-
ing set. By comparing the average and maximum root-
mean-square error (RMSE) of each method, we observe
that our method shows the best performance. Benefiting
from the weighted training set, the optimized adaptive
estimation method and our method perform better than
the global pseudo-inverse method. Moreover, the neigh-
bor training set with the appropriate size k makes the
results of our method better than the results of the op-
timized adaptive estimation method. The best results
in Table 2 are provided by setting K = 40, 80, 180, 280.
Therefore, we can draw a conclusion that the best k is de-
pendent on the size of the original training set (K ≈ N

2 ).

Table 1. Datasets for the Experiment[15].

Dataset Name Size

Training Set Munsell Matte 100, 200, 300, 600

Validation Set Natural Colors 219

Testing Set
Agfa IT8.7/2 288

Macbeth CDC 24
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Table 2. Estimation Errors on the Testing Set

Training Our Optimized Pseudo-

Size Method AE inverse

100
Mean 0.1360 0.1372 0.1957

Max 0.2063 0.2490 0.6408

200
Mean 0.1333 0.1372 0.1902

Max 0.2062 0.2696 0.6269

300
Mean 0.1261 0.1311 0.1874

Max 0.2789 0.2915 0.6101

600
Mean 0.1180 0.1262 0.1742

Max 0.2141 0.2385 0.6052

In conclusion, we propose an estimation method for
spectral reflectance using a Procam system. The method
eliminates inter-reflection and makes more accurate mea-
surement. Making use of the color-mixing matrix, our
method can recover reflectance from training without
prior knowledge of the spectral distribution of the il-
lumination and the spectral sensitivity of the camera.
We introduce an inter-reflection removal method to pro-
duces a more accurate camera response. In addition, we
adopt the Mahalanobis metric and local weighted train-
ing samples to eliminate the effect of data correlation
and to enhance accuracy.
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